If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x+39=0
a = 1; b = 22; c = +39;
Δ = b2-4ac
Δ = 222-4·1·39
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-2\sqrt{82}}{2*1}=\frac{-22-2\sqrt{82}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+2\sqrt{82}}{2*1}=\frac{-22+2\sqrt{82}}{2} $
| 3/3x=23/3 | | 9v-29=43 | | 2x+6(2+2x)+7=3x+7 | | 3-8u=10-9u | | 4c+6=35 | | -4r-8=-5r | | -9q-5=-8q-1 | | 3(x−5)=3/4(4x−20) | | 27/15=9/n | | -8j-6=-9j | | (X-10)°+(4x-10)°=90 | | 18x-2+27x+2=180 | | -d=-2d+4 | | -2t=-10-4t | | –2t=–10−4t | | 6k-36=8k-12 | | -3(x-5)=1/2(-4x-14) | | 4g+12=3g+20 | | 3(4x−1)=2(5x−7) | | 2(u-89)=14 | | –4y+10=–3y | | x^2-x*18+50=5 | | (x+6)(x-2)=105 | | 7(z-76)=77 | | −3(x−5)=12(−4x−14)-3(x-5)=12(-4x-14) | | 5(k-73)=55 | | q^2+4q+21=0 | | 22=5a+7(a–2) | | 1+3z=–9+z−10 | | 5=7a=19 | | 14l+3=147 | | 2a-12=28 |